Cardiovascular Safety of Hypoglycaemic drugs: What the fuss is all about?

Dominic Leung
Department of Cardiology
Liverpool Hospital
University of New South Wales
Australia

In 6 short years…

- Series of landmark trials on hypoglycaemic agents
 - Cardiovascular outcomes
- □ Significant academic, public and media interests
- □ Almost identical design
- □ New classes of hypoglycaemic agents
- Unprecedented scrutiny

Dipeptidyl peptidase-4 inhibitors

ORIGINAL ARTICLE

ORIGINAL ARTICLE

ORIGINAL ARTICLE

Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes

Jennifer B. Green, M.D., M. Angelyn Bethel, M.D., Paul W. Armstrong, M.D., John B. Buse, M.D., Ph.D., Samuel S. Engel, M.D., Jyotsna Garg, M.S., Robert Josse, M.B., B.S., Keith D. Kaufman, M.D., Joerg Koglin, M.D., Scott Korn, M.D., John M. Lachin, Sc.D., Darren K. McGuire, M.D., M.H.Sc., Michael J. Pencina, Ph.D., Eberhard Standl, M.D., Ph.D., Peter P. Stein, M.D., Shailaja Suryawanshi, Ph.D., Frans Van de Werf, M.D., Ph.D., Eric D. Peterson, M.D., M.P.H., and Rury R. Holman, M.B., Ch.B., for the TECOS Study Group*

2013

Sodium glucose cotransport-2 inhibitors

ORIGINAL ARTICLE

Empagliflozin, Cardiovascular Outcomes,

ORIGINAL ARTICLE

Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes

S.D. Wiviott, I. Raz, M.P. Bonaca, O. Mosenzon, E.T. Kato, A. Cahn, M.G. Silverman, T.A. Zelniker, J.F. Kuder, S.A. Murphy, D.L. Bhatt, L.A. Leiter, D.K. McGuire, J.P.H. Wilding, C.T. Ruff, I.A.M. Gause-Nilsson, M. Fredriksson, P.A. Johansson, A.-M. Langkilde, and M.S. Sabatine, for the DECLARE—TIMI 58 Investigators*

N ENGL J MED 380;4 NEJM.ORG JANUARY 24, 2019

Glucagon like peptide 1 agonists

ORIGINAL ARTICLE

Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes

Rury R. Holman, F.Med.Sci., M. Angelyn Bethel, M.D., Robert J. Mentz, M.D., Vivian P. Thompson, M.P.H., Yuliya Lokhnygina, Ph.D., John B. Buse, M.D., Ph.D., Juliana C. Chan, M.D., Jasmine Choi, M.S., Stephanie M. Gustavson, Ph.D., Nayyar Iqbal, M.D., Aldo P. Maggioni, M.D., Steven P. Marso, M.D., Peter Öhman, M.D., Ph.D., Neha J. Pagidipati, M.D., M.P.H., Neil Poulter, F.Med.Sci., Ambady Ramachandran, M.D., Bernard Zinman, M.D., and Adrian F. Hernandez, M.D., M.H.S., for the EXSCEL Study Group*

What the fuss is it all about?

- □ Why the fuss?
- □ How did it come about?
- □ Is the fuss justified?
- □ What are trial design and why so similar?
- □ Has anything good come out of it?

Thiazolidinediones (TZDs)

- □ Rosiglitazone approved by FDA in 1999
- □ Favourable effects on lowering blood glucose and HbA1c
- □ Little data on cardiovascular (CV) outcome

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JUNE 14, 2007

VOL. 356 NO. 24

Effect of Rosiglitazone on the Risk of Myocardial Infarction and Death from Cardiovascular Causes

Steven E. Nissen, M.D., and Kathy Wolski, M.P.H.

- □ 42 randomised trials
- □ From GlaxoSmithKline clinical trial websites, phase 2,3,4 trials submitted to FDA for approval and
- 2 published clinical trials
 - DREAM
 - ADOPT
- \square Rosiglitazone, n=15,560; Control, n=12,283

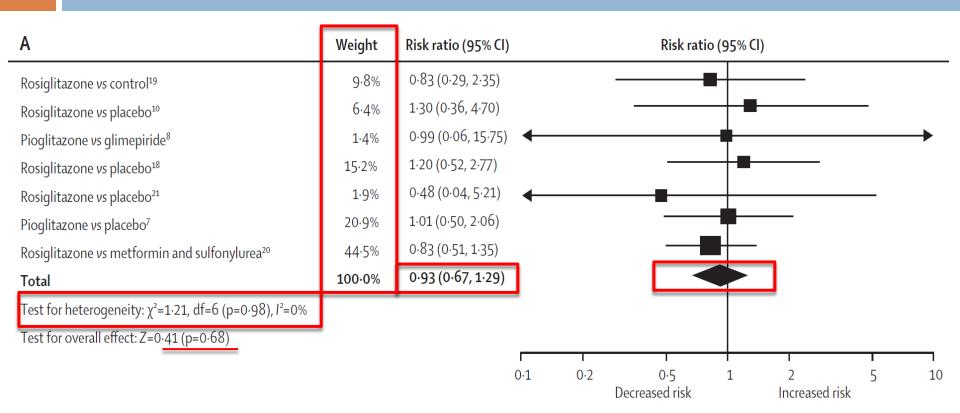
Nissen meta-analysis

Table 4. Rates of Myocardial Infarction and Death from Cardiovascular Causes.

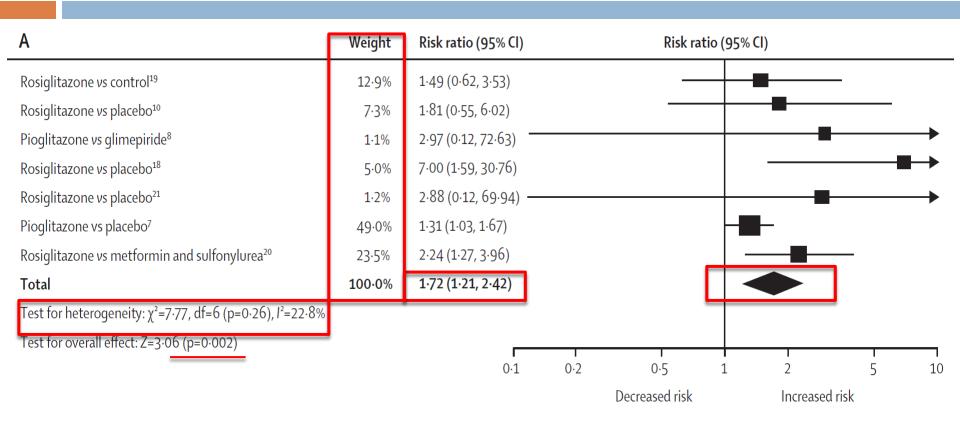
Study	Rosiglitazone Group	Control Group	Odds Ratio (95% CI)	P Value			
no. of events/total no. (%)							
Myocardial infarction							
Small trials combined	44/10,285 (0.43)	22/6106 (0.36)	1.45 (0.88–2.39)	0.15			
DREAM	15/2,635 (0.57)	9/2634 (0.34)	1.65 (0.74–3.68)	0.22			
ADOPT	27/1,456 (1.85)	41/2895 (1.42)	1.33 (0.80–2.21)	0.27			
Overall			1.43 (1.03–1.98)	0.03			

Nissen meta-analysis

- □ Included studies that reported myocardial infarction or CV death (not as primary endpoints)
 - Not adjudicated in all except one (DREAM)
- □ Fixed effect model
- □ Cochrane Q statistics used to assess heterogeneity
 - Justified use of fixed effect models as p > 0.1
- □ No information on the weighting of the trials


- □ All the attributes of a bad meta-analysis
- □ Significant ripple effects

Congestive heart failure and cardiovascular death in patients with prediabetes and type 2 diabetes given thiazolidinediones: a meta-analysis of randomised clinical trials


Rodrigo M Lago, Premranjan P Singh, Richard W Nesto

- □ 7 Randomised, double blind, controlled clinical trials
- \square N=20,191
- □ Random effects model
- □ Assessment of heterogeneity
- □ Information on weighting of each trial

Thiazolidinediones and CV death

Thiazolidinediones and heart failure

As a result ···

□ FDA issued a black box warning for TZDs in 2008

- Required *post-marketing* assessment of CV safety of new hypoglycaemic agents
 - Phase 4 trials

Is the fuss justified?

□ You form your own opinion

Thiazolidinediones and heart failure

- □ Increased incidence of heart failure
 - 0.9%/year
 - Comparator: 0.5%/year
- □ Fluid retention as a side effect
 - Effects on the distal renal tubules
- □ Fluid retention vs heart failure
- □ No documented detrimental effects on left ventricular function*
- □ ? Implications of heart failure

^{*}Dargie et al. JACC 2007;49:1705

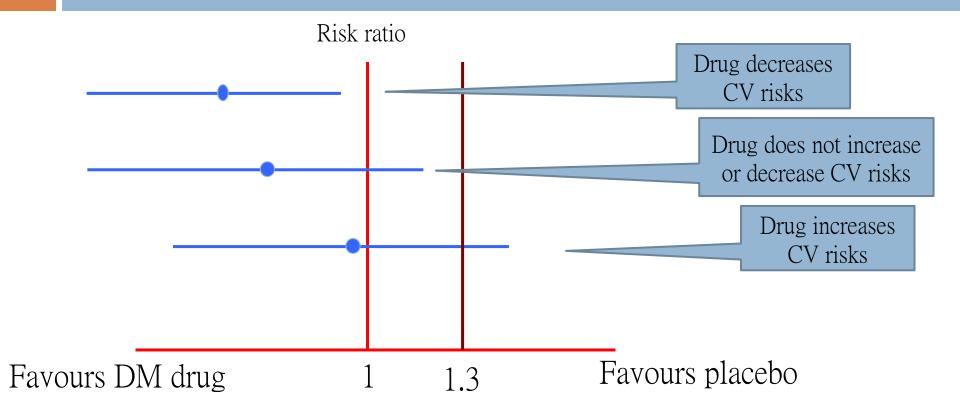
^{*}St John Sutton et al. Diabetes Care 2002;25:2058

Heart failure and diabetes

- □ Increased incidence of heart failure in diabetes
 - Multiple etiologies
- Dyspnoea and ankle swelling common in diabetes
 - Even without heart failure
- Poor physical fitness, obesity, Immobility, chronic kidney disease, proteinuria and hypoalbuminaemia, varicose veins (deep vein thrombosis), treatment related

What the fuss is it all about?

- □ Why the fuss?
- □ How did the fuss come about?
- □ Is the fuss justified?
- □ Why are trial design so similar?
- □ Has anything good come out of it?


Cardiovascular outcome trial design

- □ Patient population
 - Established CV disease or at high risks
- □ Non inferiority design
- Sequential testing
- □ Hypoglycaemic drug versus placebo
 - In contrast to other non inferior trials
 - Active controls

Cardiovascular outcome trial design

- □ Endpoint:
 - 3 point MACE (major adverse CV events)
 - CV death, non fatal myocardial infarction, non fatal stroke
- □ Non-inferior margin
 - **1.**3
 - Mandated by FDA

Non-inferiority trial vs placebo

What the fuss is it all about?

- □ Why the fuss?
- □ How did the fuss come about?
- □ Why are trial design so similar?
- □ Is the fuss justified?
- □ Has anything good come out of it?

EXAMINE

Table 3. Major Safety End Points.								
End Point	Placebo (N = 2679)	Alogliptin (N=2701)	Hazard Ratio for Alogliptin Group (95% CI)	P Value*				
no. (%)								
Primary end point†	316 (11.8)	305 (11.3)	0.96 (≤1.16)‡	0.32				
Components of primary end point								
Death from cardiovascular causes	111 (4.1)	89 (3.3)	0.79 (0.60–1.04)	0.10				
Nonfatal myocardial infarction	173 (6.5)	187 (6.9)	1.08 (0.88-1.33)	0.47				
Nonfatal stroke	32 (1.2)	29 (1.1)	0.91 (0.55-1.50)	0.71				
Principal secondary end point§	359 (13.4)	344 (12.7)	0.95 (≤1.14)‡	0.26				
Other end points								
Death from any cause	173 (6.5)	153 (5.7)	0.88 (0.71-1.09)	0.23				
Death from cardiovascular causes¶	130 (4.9)	112 (4.1)	0.85 (0.66–1.10)	0.21				

SAVOR TIMI 53

End Point	Saxagliptin (N = 8280)	Placebo (N = 8212)	Hazard Ratio (95% CI)	P Value		
no. (%)						
Cardiovascular death, myocardial infarction, or stroke: primary efficacy end point	613 (7.3)	609 (7.2)	1.00 (0.89–1.12)	0.99		
Cardiovascular death, myocardial infarction, stroke, hospitalization for unstable angina, heart failure, or coronary revascularization: secondary efficacy end point	1059 (12.8)	1034 (12.4)	1.02 (0.94–1.11)	0.66		
Death from any cause	420 (4.9)	378 (4.2)	1.11 (0.96–1.27)	0.15		
Death from cardiovascular causes	269 (3.2)	260 (2.9)	1.03 (0.87–1.22)	0.72		
Myocardial infarction	265 (3.2)	278 (3.4)	0.95 (0.80-1.12)	0.52		
Ischemic stroke	157 (1.9)	141 (1.7)	1.11 (0.88-1.39)	0.38		
Hospitalization for unstable angina	97 (1.2)	81 (1.0)	1.19 (0.89–1.60)	0.24		
Hospitalization for heart failure	289 (3.5)	228 (2.8)	1.27 (1.07–1.51)	0.007		
Hospitalization for coronary revascularization	423 (5.2)	459 (5.6)	0.91 (0.80–1.04)	0.18		
Doubling of creatinine level, initiation of dialysis, renal transplantation, or creatinine >6.0 mg/dl (530 μ mol/liter)	194 (2.2)	178 (2.0)	1.08 (0.88–1.32)	0.46		
Hospitalization for hypoglycemia	53 (0.6)	43 (0.5)	1.22 (0.82–1.83)	0.33		

Subgroup analysis

- □ Multiple comparisons (problem of multiplicity)
- \Box P < 0.05
 - Type 1 error (α)
 - 1 in 20 of "false positive"
- □ Risks of "false positives" with multiple testing
 - 40% with 10 tests
 - □ 64% with 20 tests
 - \Box 1 $(0.95)^n$
- Only hypotheses generating

TECOS

A Primary Cardiovascular Outcome

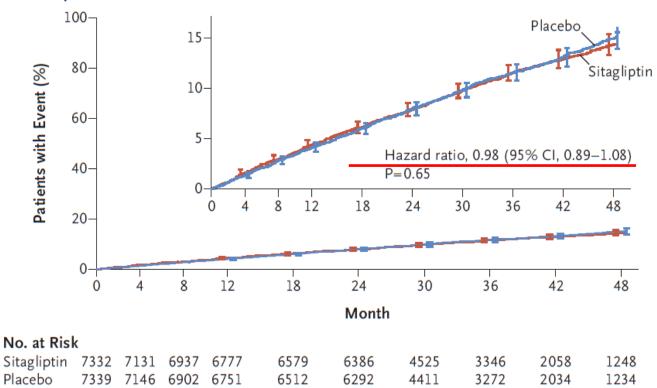
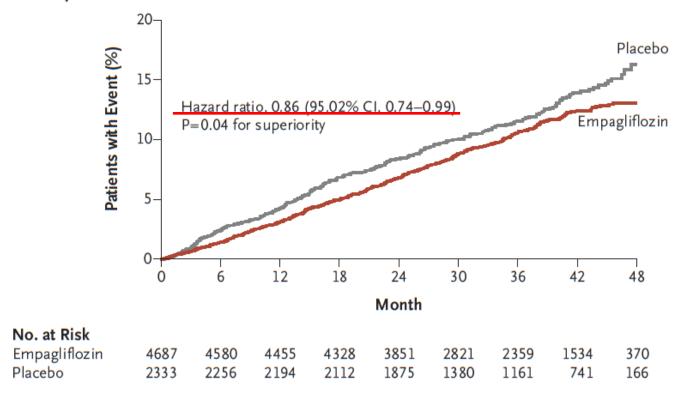


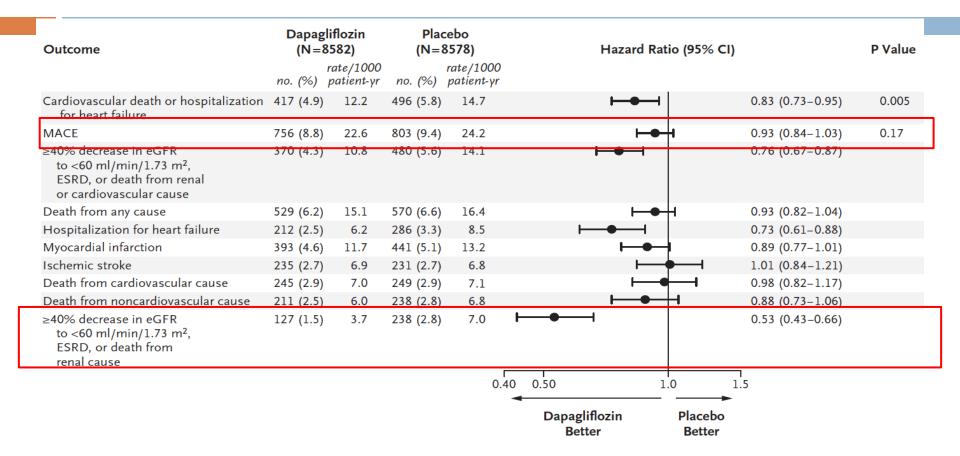
Figure 3. Meta-Analysis of SAVOR-TIMI 53, EXAMINE, and TECOS

First hospitalization for heart failure Favors Favors DPP4i Placebo HR (95% CI) P Value SAVOR-TIMI 53 1.27 (1.07-1.51) .007 **EXAMINE** 1.19 (0.89-1.59) .24 **TECOS** 1.00 (0.84-1.20) >.99 1.14 (0.97-1.34) .10 SAVOR-TIMI 53 plus **EXAMINE plus TECOS** $(P = .16, I^2 = 44.9)$ 0 2 HR

Random effects model


JAMA Cardiol. 2016;1(2):126-135. doi:10.1001/jamacardio.2016.0103 Published online April 13, 2016.

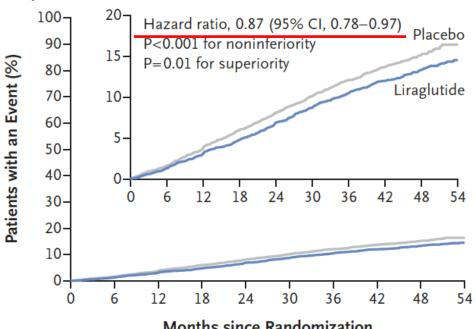
Dipeptidyl peptidase-4 inhibitors


- □ No increase in cardiovascular adverse outcome
 - Including heart failure
- □ Not superior to placebo
 - Cardiovascular outcomes

EMPA-REG outcome trial

A Primary Outcome

DECLARE

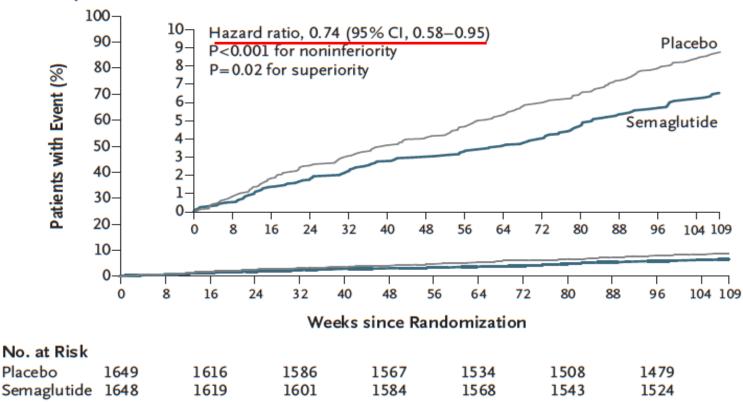


Sodium glucose cotransport-2 inhibitors

- □ Reduction in major adverse cardiovascular events
- □ Reduction in progression of renal disease and renal events
- □ Set out to demonstrate CV safety
- □ Bonus of showing cardio-renal protective effects

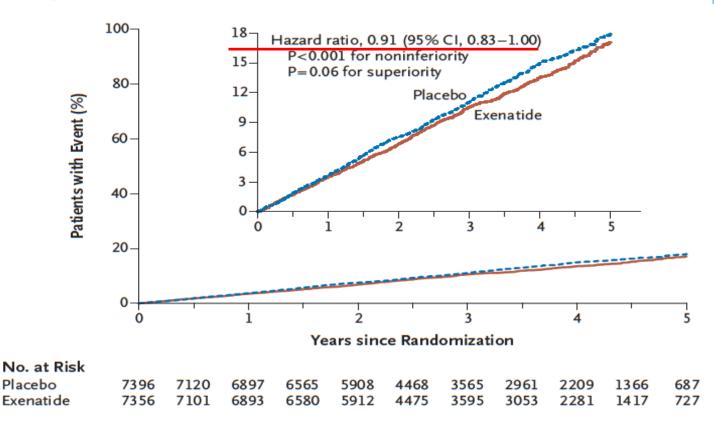
Liraglutide - LEADER trial

A Primary Outcome



Months since Randomization

No. at Risk Liraglutide 4172 4072 3982 Placebo 4123 4237


Semaglutide - SUSTAIN 6

A Primary Outcome

Exenatide - EXSCEL

A Primary Cardiovascular Outcome

Glucagon like peptide 1 agonists

- □ Reduction in major adverse cardiovascular events
- □ Set out to demonstrate CV safety
- □ Bonus of showing cardio protective effects

Why lower CV risks with these agents?

- □ Weight loss
 - 2.3 kg lower in treatment arm in LEADER
 - 2 kg lower in EMPA REG
- □ Lower blood pressure
 - 1.3 mmHg lower in systolic blood pressure in treatment arm in LEADER
 - Reduced systolic and diastolic BP by 1-5 mmHg*

* Wang B et al. Diabetes, Obesity and Metabolism 15: 737 – 749, 2013.

Why lower CV risks with these agents?

- □ Glycaemic control (HbA1c)
 - □ 0.4% lower in LEADER
 - 0.53%-0.6% lower in EMPA_REG
- □ Lipid levels
 - Increase in LDL and HDL in EMPA-REG
 - Modest reduction in LDL and total cholesterol with GLP1 agonists*

Sun F et al, Clin Ther 2015; 37:225

Why lower CV risks with these agents?

- □ Heart rate
 - 3 beats/minute higher in treatment arm in LEADER
 - No increase in EMPA_REG

Cardiovascular outcome trials

- □ Nissen meta-analysis on the safety of rosiglitazone in 2007
- □ A low quality meta-analysis
- □ Flaws in design, studies included, analysis and interpretation
- □ Is it friend or foe?

Something good has come out of it!

Story to be continued ···.

□ A tale of two meta-analyses

Thank you for your attention